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ABSTRACT

In recent years, with the widespread usage of Web 2.0 tech-
niques, crowdsourcing plays an important role in offering
human intelligence in various service websites, such as Ya-
hoo! Answer and Quora. With the increasing amount of
crowd-oriented service data, an important task is to ana-
lyze latest hot topics and track topic evolution over time.
However, the existing techniques in text mining cannot ef-
fectively work due to the unique structure of crowd-oriented
service data, task-response pairs, which consists of the task
and its corresponding responses. In particular, existing ap-
proaches become ineffective with the ever-increasing crowd-
oriented service data that accumulate along the time. In
this paper, we first study the problem of discovering topics
over crowd-oriented service data. Then we propose a new
probabilistic topic model, the Topic Crowd Service Model
(TCS model), to effectively discover latent topics from mas-
sive crowd-oriented service data. In particular, in order to
train TCS efficiently, we design a novel parameter inference
algorithm, the Bucket Parameter Estimation (BPE), which
utilizes belief propagation and a new sketching technique,
called Pairwise Sketch (pSketch). Finally, we conduct ex-
tensive experiments to verify the effectiveness and efficiency
of the TCS model and the BPE algorithm.
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1. INTRODUCTION
Crowdsourcing refers to outsourcing works traditionally

performed by an employee to an “undefined, generally large
group of people in the form of an open call”[13]. In gen-
eral, crowdsourcing-based service has a common framework:
each employer (a.k.a the task publisher) poses a task, and
then this task is responded or finished by many different and
unknown crowd employees. Thus, the “task-response pairs”
is the unique structure of crowdsourcing data. In this pa-
per, we call information services provided by crowdsourcing,
which include massive task-response pairs, as crowd-oriented
services. Examples of crowd-oriented services include Ya-
hoo! Answers, Quora, and Baidu Recommender, etc.

Given a crowd-oriented service system, one of the most
significant problems is the“assignment problem”[11], namely
how the crowd-oriented service system assigns a task to a
right employee or helps an employee to find a right task. In
order to enhance the accuracy of assignments, an effective
method is to match them in terms of the semantic topic
distribution of tasks and historical responses of employees.
Thus, the problem of discovering topic is a fundamental task
for crowd-oriented service systems. For example, stackover-
flow1 is a crowd-oriented website regarding programming
techniques. By means of discovering the topic distributions
of tasks and responses in stackoverflow, we can know which
programming technique is the most popular one in current
communities of programmers and guide the crowdsourcing
platform to find hidden speciality of crowd employee accord-
ing to their responses.

Although topic discovery is a basic operator for crowd-
oriented service data, it is not trivial to capture hidden top-
ics over crowd oriented service data using existing techniques
of text mining. Back to the example about stackoverflow,
Table 1 includes several real tasks and responses downloaded
from the stackoverflow. The crowd-oriented service data in
Table 1 contains infinite entries that are chronologically or-
dered and each entry contains a task and its correspond-
ing responses (if any). We can observe that the first and
second task-response entries discuss the topic related with
Android-based developing techniques, and the third one is
about iPhone techniques. If we use existing text mining
techniques, such as Latent Dirichlet allocation (LDA) model,
to discover the hidden topic distribution, a straightforward
solution is to consider each task and response as a docu-
ment and applies LDA model. For the first two entries in
Table 1, this method can capture the topic about Android-
based technique in the tasks and their responses since “An-

1http://stackoverflow.com/
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Table 1: Crowd-oriented Service Data from the stackoverflow
ID Tasks Responses

1 Android application database to save images ... Android SQLite database with multiple tables can...
2 How to use simpleadapter with activity Android... An Android ListView with adapter is shown as follows...
3 Find mobilephones on hotspot networks in iPhone?... iOS 7 system of Apple devices provide an IP address of ...
... ...... ......

droid” occur in both of them. However, for the third entry,
LDA model might not return similar topic distribution be-
cause there is no common words appeared in both of the
task and the response.

Thus, for crowd-oriented service data, it is the neces-
sary to discover hidden topics by considering both the task-
response pair correlation and the specific semantic feature
of each task and response. Furthermore, a real-time crowd-
oriented service should be viewed as an online updateable
data of crowd-oriented task-response pairs, which is referred
as a series of consecutively submitted crowd-oriented tasks
(task for short) and corresponding responses from crowds.
Therefore, for these online service data, the efficiency of
training the model is another major concern. The latent
topics need to be discovered from massive crowd-oriented
service data in real time. To achieve these goals in discov-
ering topics over crowd-oriented service data, we have to
address the following two challenges.

• Challenge 1: How to design an effective model to cap-
ture the task-response correlation over dynamic evolv-
ing crowd-oriented service data?

• Challenge 2: Facing the high volume of crowd-oriented
service data, how to guarantee the training efficiency?
There are two critical issues need to be addressed. The
first problem is how to efficiently store and process
massive task-response pairs. The other one is how
to design an efficient parameter estimation approach,
which can help deriving the proper parameter settings
for the proposed topic detection model over crowd-
oriented service data.

The aforementioned challenges reflect the high demand of
an advanced probabilistic model which is tailored to meet
the crowd data form and large data size. In answering this
demand, we design and present the Topic Crowd Service
Model (TCS), which features the capability of discovering
latent topics from massive crowd-oriented service data with
high accuracy. One essential niche of TCS is that it cap-
tures the the structure of task-response pair by preserv-
ing the mutual correlation. The massive size of incoming
data, which is continuously increasing everyday, is the night-
mare for most conventional parameter estimation methods
such as collapsed Gibbs Sampling(GS)[20] and Variational
Bayes(VB)[1], due to the high computational cost while travers-
ing the dataset. It is observed that such computational cost
attributes to the iterative behaviour of scanning the entire
corpus and visit the complete topic space. This procedure
leads to a linearly increasing computational time cost of the
size of the data, the number of topics and the number of
training iterations. In answering such challenge, we pro-
pose the Block Parameter Estimation(BPE), which is a fast
parameter estimation method. The BPE features the Pair
Sketch(pSketch) technique, which is a storage space reduc-
tion approach that alleviates the pain of updating new data

trunks. Moreover, in order to achieve the convergence of
parameter inference process, BPE integrates belief propaga-
tion[18] into the stochastic gradient descent framework [3],
in which a series of online gradient updates lead to the sta-
tionary point of the likelihood function of TCS. Such design
of the BPE brings in significantly speedup for the parameter
inference process by simplifying the updates of TCS during
the iterations: in each iteration, only a small portion of the
crowd-oriented service data are selected as well as a part of
topic space for message updating and passing. In sum, we
make following major contributions:

• We design and present a new probabilistic topic model,
the Topic Crowd Service Model (TCS model), which
features the capability of discovering latent topics from
massive crowd-oriented service data with high accu-
racy.

• We propose a fast parameter estimation algorithm, the
Bucket Parameter Estimation (BPE), which utilizes
a new sketching technique, called pSketch, and belief
propagation to enhance the efficiency of the training
process significantly.

• We verify the effectiveness and efficiency of the pro-
posed methods through extensive experiments on real
datasets. The experimental evaluation shows that TCS
model and BPE algorithm outperform several existing
probabilistic topic models and parameter estimation
methods.

The rest of the paper is organized as follows. Our prob-
lem formulation is introduced in Section 2. In Section 3,
we discuss the assumptions and generative process of the
Topic Crowd Service Model (TCS). In addition, to train
TCS efficiently, we present a new pairwise data-based sketch
(pSkech) to quickly select the significant words in crowd-
oriented service data in Section 4. Based on the significant
words, we propose an effective parameter estimation algo-
rithm, called Bucket Parameter Estimation (BPE), to train
TCS in a specific bucket and multiple consecutive buckets
of crowd-oriented service data in Section 5. We present the
experimental results, related work and conclude the paper
in Sections 6, 7, and 8, respectively.

2. PROBLEM FORMULATION
In this section, we formally define the related concepts and

the problem of discovering hot topics over crowd-oriented
service data. Let us begin with defining a few basic concepts
as follows.

Definition 1 (Task-Response Pair). Given a crowd-
oriented task Ti, a set of corresponding responses {Ri,1, · · · ,
Ri,m}, the arbitrary pair (Ti, Ri,j) for j ∈ [1, m] is called a
task-response pair.
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Table 2: Notation
Notation Description

D the set of all documents
W the set of all words
WT the set of all words from tasks
WR the set of all words from responses
T the set of distinct words from tasks
R the set of distinct words from responses
K the number of topics
d document
s sentence
z topic
w word
θ multinomial distribution over topics
φ multinomial distribution over words
α Dirichlet prior vector for θ
β Dirichlet prior vector for φ

zk
d,s

the sentence s of document d is assigned to topic k

zk
d,s,w

the word w in sentence s

of document d is assigned to topic k
nd,s,w the number of w in sentence s

of document d
λT the significant threshold of words in tasks
λR the significant threshold of words in responses
ρD the proportion of documents for message passing
ρK the proportion of topics for message passing
ld the related documents with the document d
ζ the influence of related documents

Definition 2 (Crowd-oriented Service Data). Let
CS={(T1, R1,1), · · · , (Tn, Rn,1), · · · , (Tn, Rn,m)} be a set of
task-response pairs, where each task and response is a docu-
ment. Each document d is represented by a subset of the col-
lection of words W={w1, · · · , w|W |}. Given arbitrary task-
response pair, a word-pair includes two words, one word is
from the document of the task, the other word is from the
document of the response.

Definition 3 (Topic). A semantically coherent topic
φ is a multinomial distribution of words {p(w|φ)}w∈W with
the constraint

∑

w∈W p(w|φ) = 1.

According to the definitions of related concepts, we can
now formally define the major task in the problem of dis-
covering topics over crowd-oriented service data as follows.

Discovering Topics over Crowd-oriented Service
Data Problem: Given the input of a crowd-oriented ser-
vice data CS, we are required to infer the latent topics φ
over in CS.

Moreover, we list notations used in this paper in Table 2.

3. TOPIC CROWD SERVICE MODEL
In this section, we present a novel probabilistic model,

Topic Crowd Service Model (TCS), for discovering topics
over crowd-oriented service data. As shown in Table 1 and
aforementioned definitions, each document is either a task
or a response from crowd employees. Then, we illustrate the
underlying logic of TCS. The generative process of TCS is
shown in Algorithm 1.

Each document has a topic distribution. According to the
pairs generated by pSketch, which will be introduced in Sec-
tion 4, the topically coherency of each document is related.
When composing the documents, the user first decides the
topic that is aligned with his or her current task requirement
and then selects some words according to the chosen topic.
Notably, the topic distribution is determined by the docu-
ment itself and the documents related by the correspond-
ing task-response pairs. Furthermore, since each sentence

Algorithm 1: Generative process of TCS

1 for each topic k ∈{1, · · · ,K} do
2 draw a word distribution φk ∼ Dirichlet(β);

3 for each document d ∈{1, · · · , D} do
4 draw topic distribution θd ∼ Dirichlet(α);
5 if d is a task then
6 sample a response d′ with regard to the number

of sketch pairs between d and d′;

7 if d is a response then
8 select the corresponding task d′;

9 generate new document topic distribution θ′ by
combining θd and θd′ ;

10 for each sentence s ∈ d do
11 choose a topic z ∼ Multinomial(θ′);
12 generate words w ∼ Multinomial(φz);

is usually topically coherent, we impose the constraint that
the words in each sentence should share the same topic, in
order to capture semantic coherency.

Although existing parameter inference techniques, such as
Gibbs sampling and variational Bayes, can be used to train
the TCS model according to Algorithm 1, they have to spend
higher computational cost. In order to enhance the efficiency
of training process significantly, we will consider the problem
of training the TCS model as a labelling problem. In other
words, the training objective is equal to assign a set of topic
labels to explain the observed data.

4. PAIRWISE SKETCH
As discussed in Section 3, the latent topic distribution is

influenced by corresponding task-response pairs in the pro-
posed TCS model. Thus, it is crucial for the training pro-
cess to calculate frequencies of word pairs from task-response
pairs. However, due to high-volume of online crowd-oriented
service data, it is infeasible to count and store all word
pairs due to the excessively high cost. Fortunately, word
pairs with significant frequencies provide most information
for discovering latent topics. So we propose to give pri-
ority to capture the contents of these pairs. Since finding
significant word pairs is the foundation of our parameter es-
timation algorithm, we present a novel sketching structure,
called Pairwise Sketch (pSketch), to efficiently select the sig-
nificant word pairs from massive online task-response pairs.
Before discussing the new data structure and algorithm, we
first introduce several basic concepts and notations.

Given the set of all words of the given crowd-oriented ser-
vice data W , it can be partitioned into two disjoint subsets,
denoted by WT and WR, which consist of all words from
tasks and responses, respectively. Moreover, the sets of dis-
tinct words in WT and WR are denoted by T and R, respec-
tively. Then, a significant word pair is defined as follows.

Definition 4 (Significant Word Pair). Given a crowd-
oriented service data CS, two significant thresholds λT and
λR where λT , λR ∈ (0, 1), a word pair (t,r) is a significant
word pair if and only if f(t,r)>⌈λT f(t)⌉ and f(t,r)>⌈λRf(r)⌉,
where f(t,r) means the frequency of the word pair (t,r), f(t)
is the sum of frequencies of all word pairs with t as the word
in tasks, and f(r) is similar.

Please note that duplicates of a task in CS is only counted
as one task. In general, |WR| >> |WT |, hence we set two dif-
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(a) Primary Hashing (PH) (b) Secondary Hashing (SH)

Figure 1: Pairwise Sketch (pSketch)

ferent significant thresholds for them. In order to discover
all significant word pairs for online crowd-oriented service
data efficiently, a straightforward idea is to utilize existing
streaming algorithms of finding frequent items, such as the
CM-Sketch algorithm[7], the lossy-counting algorithm[15],
the space-saving algorithm[17], and etc. However, the ex-
isting researches only handle single item rather than corre-
lated pairs. Hence, we have to design a novel solution to
find all significant word pairs. Inspired by the space-saving
algorithm[17], which is one of the fastest streaming algo-
rithms, we propose a novel sketching structure, called the
PairwiseSketch (pSketch) and algorithm to find all signifi-
cant word pairs. The pSketch is defined as follows.

Pairwise Sketch: It consists of two hashing structure
components: the primary hashing structure (denoted PH )
and the secondary hashing structure (denoted SH).

Primary Hashing Structure (PH): It includes |T| primary
hashing units since the crowd-oriented service data has |T|
distinct words from tasks. Each primary hashing unit (de-
noted PH(ti)) uses ti as the hashing key and maps a space-
saving structure, which is also called the Stream-Summary
in [17], to maintain the information about which words from
responses are approximate significant for ti. In other words,
rj is approximate significant for ti if f(ti, rj) > ⌈(λT −
ǫ)f(t)⌉. ǫ is the error ratio for λT . Moreover, based on
[17], the number of elements of each space-saving structure
is equal to ⌈ 1

ǫ
⌉, namely m = ⌈ 1

ǫ
⌉. Figure 1(a) shows a pri-

mary hashing structure.
Secondary Hashing Structure (SH): Similar to the Pri-

mary Hashing Structure, it consists of the set of secondary
hashing units. Similarly, the number of elements of each
space-saving structure, n = ⌈ 1

δ
⌉ where δ is the error ra-

tio for λR. However, there are two differences between the
two hashing structures. On the one hand, the number of
secondary hashing units is scalable rather than |R|. As dis-
cussed above, we choose the set of words from tasks as the
primary hashing set since |WR| >> |WT |. Thus, our ba-
sic idea is to construct secondary hashing units only for the
words from responses in current significant word pairs. On
the other hand, an additional element, called the signifi-
cant counter (denoted Sig(rj)), appears in each secondary
hashing units SH(rj) and is used to filter out redundant
secondary hashing units , where Sig(rj) records the num-
ber of currently significant word pairs from tasks with rj .
Once Sig(rj)=0, rj can be safely deleted from SH . Finally,
in practice, in order to discover potential significant words
from responses, we relax the monitoring requirement to the
concept of ǫ-significant words from responses. Namely, a
word rj is ǫ-significant for a word ti if f(ti, rj) > ǫf(ti).
Figure 1(b) shows a secondary hashing structure.

According to the aforementioned pSketch structure, we
design the significant word pair sketching algorithm in Al-
gorithm 2. For each word pair (t,r), the algorithm first
checks whether t constructs its primary hashing unit PH(t)
in lines 1-2. Then, the algorithm calls the space-saving algo-
rithm subroutine to maintain frequencies of the word pairs

Algorithm 2: Significant Word Pairs Sketching

Input: a crowd-oriented service data CS, a error ratio
ǫ for λT , a error ratio δ for λR,

1 for each word pair (t,r)∈CS do
2 if t does not construct its PH(t) in PH then
3 Construct PH(t);

4 Call Space-Saving(PH(t),r,ǫ);
5 if r becomes ǫ-significant for F(t) then
6 if SH(r) exists in SH then
7 Sig(r)← Sig(r)+1;

8 else
9 Construct SH(r) and Sig(r)← 1;

10 if r is not ǫ-significant for F(t) then
11 Sig(r)← Sig(r)-1;
12 if Sig(r)=0 then
13 Delete SH(r);

14 if SH(t)∈SH then
15 Call Space-Saving(SH(t),t,δ);

including t in line 4. If r becomes ǫ-significant for t and has
SH(r) in the current secondary hashing structure, the algo-
rithm pluses one for Sig(r) in lines 5-7. Otherwise, SH(r)
is constructed in lines 8-9. When r is not ǫ-significant for
t, Sig(r) is decreased by 1. In particular, the SH(r) will be
deleted from current secondary hashing structure if Sig(r)
is equal to zero. In other words, the current r is never in-
cluded by any significant word pairs. Finally, the algorithm
also call the space-saving algorithm subroutine to maintain
frequencies of the word pairs including r if SH(r) is not
deleted from SH . Hence, the pSketch structure not only
maintains all significant word pairs but also returns them
while traversing the sketch structure.

Computational Complexity Analysis: The time com-
plexity and space complexity of Algorithm 2 are shown as
follows. Since crowd-oriented service data is online in most
cases, the number of word pairs may be currently unknown.
Hence, we mainly analyze the time of processing each word
pair in Algorithm 2. The processing time for each word pair
in Algorithm 2 is an amortized constant time, which can be
directly obtained because Algorithm 2 calls the space-saving
subroutine in constant time, and the space-saving subrou-
tine has the amortized constant processing time[17].

The space complexity of Algorithm 2 is O( 1+δ
ǫδ
|T |). In

the following, the space usages of primary and secondary
hash structures are analyzed, respectively. For primary hash
structures, Algorithm 2 assigns a space-saving structure for
each distinct word from task. Each space-saving structure
spendsO( 1

ǫ
) according to its definition[17]. Hence, the space

usage of primary hash structures is totally O( |T |
ǫ
). Further-

more, according to the definition of ǫ-significant word pairs,
the maximum number of words that come from responses
and satisfy f(t, r) > ǫ · f(t) for any word t from tasks is 1

ǫ
.

Thus, the total space usage of secondary hash structures is
|T |
ǫδ

. To sum up, the total space complexity of Algorithm 2

is O( |T |
ǫ

+ |T |
ǫδ

) = O( 1+δ
ǫδ
|T |).

5. PARAMETER ESTIMATION
In this section, we discuss the details of the Bucket Param-

eter Estimation (BPE). Section 5.1 first shows the procedure
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of utilizing BPE to train TCS with crowd-oriented service
data in a specific bucket. Section 5.2 also extends the BPE
approach to the scenario of multiple consecutive buckets.

5.1 Parameter Estimation in Single Bucket
Section 4 introduces a novel sketching structure to select

the significant task-response pairs in crowd-oriented service
data. According to these task-response pairs, we propose
a new latent parameter estimation approach in a bucket in
this subsection, a. Since each sentence is the basic unit for
topic assignment, we first aim to infer the probability that
a sentence s of the document d is assigned to the topic k,
namely the following formula,

P (zkd,s|z
k
d,−s,nd,−s, z

k
·,−s,w ,n·,−s,w, ld) (1)

where ld denotes the related documents which include a word
occurring with the other word of the current document d in
at least a significant word pair in pSketch, −s means all
sentences in the current document d without s, and zd,−s

and z·,−s,w are all possible topic assignments of neighbouring
variables.

Therefore, we denote the belief message by µk
d,s, indicating

a sentence s of the document d is generated by the topic k.
It is represented by the following formula:

µk
d,s ∝

(1− ζ)µk
d,−s

+ ζµk
ld

+ αk

∑

k′

(

(1− ζ)µk′

d,−s
+ ζµk′

ld
+ αk′

)

Γ
(

∑

r′(n·,−s,w′µk
·,−s,w′

+ βw′ )
)

Γ
(

∑

w′ (n·,−s,w′µk
·,−s,w′

+ βw′ + nd,s,w′ )
)

∏

w∈s

(Γ(n·,−s,wµk
·,−s,w + βw + nd,s,w)

Γ(n·,−s,wµk
·,−s,w + βw)

)

(2)

where ζ denotes a ratio to influence the intensity between
the current document d and the related documents ld. In
addition, belief message µk

d,s,w that a word w in the sentence

s can be also updated by µk
d,s,w = µk

d,s..
According to Equation 2, we need to perform a series of

iterations to update beliefs and infer parameters. In order
to guarantee the efficiency and effectiveness of training the
TCS model, there are two crucial challenges: 1) What is the
best strategy for the training process? 2) when should the
iteration process terminates?

For the first challenge, our main idea is to choose the

largest belief residual, which is denoted by rkd,s =
∣

∣

∣µk
d,s(t)−

µk
d,s(t − 1)

∣

∣

∣
, as the updating goal in the updating process

from the (t− 1)th iteration to the tth iteration. It is reason-
able for the updating method in each iteration because the
largest belief residuals speed up the convergence of iterations
as much as possible. Based on the aforementioned updat-
ing strategy, we have to update all non-zero belief residuals,
whose number is too huge. Hence, to further enhance the
efficiency of the training process, we select only significant
task-response pairs, topics, and documents in the training
process according to the pSketch. Before introducing more
details of our selection strategy, we first extend the concept
of rkd,s to the residuals of higher levels. We denote the resid-

ual of the document d on the topic k as rkd =
∑

s
rkd,s. In

other words, the residual of the document d on the topic k
is equal to the sum of all residuals of sentences of the docu-
ment d in the topic k. Similarly, we also denote the residual

of the document d as rd =
∑

s
rkd . Then, we define two

selected proportions, denoted by ρD and ρK , of documents
and topics for message passing in each iteration.

Based on the above concepts, our selection updating strat-
egy in each iteration is shown as follows.
• Step 1: We sort all rd in a descending order and choos-

ing ρD ×D documents having the ρD ×D largest rd,
where D is the number of documents.
• Step 2: For each selected document d, we sort all rkd in

a descending order and choose ρK ×K topics having
the ρK ×K largest rkd in d, where K is the number of
topics.
• Step 3: We only update belief messages in the set of

ρD ×D documents and ρK ×K topics.

According to the above selection updating strategy, we
can obtain the normalized estimated messages as follows.

µ̂k
d,s(t) =

µk
d,s

(t)
∑

k µ̂k
d,s

(t− 1)
∑

k µk
d,s

(t)
(3)

µ̂k
d,s,w(t) =

µk
d,s,w(t)

∑

k
µ̂k
d,s,w(t− 1)

∑

k
µk
d,s,w(t)

(4)

where (t − 1) and t are the previous iteration and the cur-
rent iteration, respectively. Based on the aforementioned
belief messages, we can infer the following parameters: the
distribution of topics, θ, and the distribution of words, φ,
respectively. Namely,

θkd =
µk
d,· + αk

∑

k′

(

µk′

d,· + αk′

) . (5)

φk
w =

µk
·,·,w + βw

∑

w′

(

µk
·,·,w′ + βw′

) . (6)

For the second challenge, the iteration process also plays a
important role. We give two termination conditions for the
iteration process. The first condition is a predefined number
of iterations. The second condition is when the convergence
of the iteration process occurs.

To sum up, based on the solutions to the above two chal-
lenges, Algorithm 3 presents the Bucket Parameter Esti-
mation (BPE) algorithm. According to the pseudocode in
Algorithm 3, BPE algorithm first initializes and normalizes
µk
d,s(0) and µk

d,s,w(0) in line 2. The pSketch stores the fre-
quencies of significant task-response pairs and assists the
initialization of µk

d,s,w(0). Then, in each iteration, BPE al-
gorithm sorts the documents according to corresponding rd
and selects ρD × D documents having the largest residu-
als in lines 3-10. For each selected documents, BPE algo-
rithm also sorts topics and selects ρK ×K topics having the
largest residuals in lines 4-8. After the selection, this algo-
rithm updates and normalizes µk

d,s(t) and µk
d,s,w(t) in line

5. In particular, please note that BPE algorithm has to sort
and calculates all residuals of all documents and topics in
the first iteration because there is no previous information.
Finally, BPE algorithm terminates when one of two termi-
nation conditions, the maximum iteration number and the
convergence of iteration, is satisfied.

5.2 Parameter Estimation in Multiple
Consecutive Buckets.

Section 5.1 have introduced the Bucket Parameter Esti-
mation algorithm within a bucket, we extend the BPE al-
gorithm to the scenario of multiple consecutive buckets. In
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Algorithm 3: Bucket Parameter Estimation (BPE)

1 for each task-response pair in each document d and
each topic k do

2 Random initialization and normalization µk
d,s(0)

and µk
d,s,w(0) based on pSketch;

3 for each iteration do
4 for each document do
5 compute µk

d,s(t) and µk
d,s,w(t);

6 compute rkd,s(t), r
k
d(t) and rd(t);

7 Sort rkd(t) in a descending order;
8 Select the ρK ×K documents having the largest

residuals.
9 Sort rd(t) in a descending order;

10 Select the ρD ×D documents having the largest
residuals.

fact, there are many real applications for the scenario of mul-
tiple consecutive buckets. For example, incremental crowd-
oriented service data, updating crowd-oriented service data,
crowd-oriented service data steams, and so on. For such
data, we can partition the complete data into multiple buck-
ets, then extend BPE algorithm to infer latent topics and
capture the evaluation of topics.

First of all, we define several new input parameters for
the scenario of multiple consecutive buckets. We denote m
as the index of multiple buckets and Dm as the number of
documents in the mth bucket. Please note that m ∈ [1,∞],
d ∈ [1, Dm], and w ∈ [1,∞]. The indexes of multiple buck-
ets and words reach infinity because infinity crowd-oriented
service data are considered in the scenario of multiple con-
secutive buckets.

Then, we introduce how to extend BPE algorithm to the
scenario of multiple consecutive buckets. Different from the
updating strategy in the single bucket, the basic idea is that
the updating parameters not only consider the information
on the current bucket but also integrate the information on
the previous buckets. Specifically, in the mth bucket, the
extended BPE algorithm first randomly initializes and nor-
malizes the belief messages, denoted by µk

d,s[m], then ini-

tializes the sufficient statistics, denoted by Ωk
w[m − 1] =

n·,·,w[m − 1]µk
·,·,w [m − 1]. Hence, the belief message that a

sentence s of the document d on the topic k in Equation 2
should be extended as follows,

µk
d,s[m] ∝

(1 − ζ)µk
d,−s

[m] + ζµk
ld
[m] + αk

∑

k′

(

(1− ζ)µk′

d,−s
[m] + ζµk′

ld
[m] + αk′

)

Γ
(

∑

w′ (n·,−s,w′ [m]µk
·,−s,w′

[m] + Ωk
w′

[m− 1] + βw′ )
)

Γ
(

∑

w′ (n·,−s,w′ [m]µk
·,−s,w′

[m] + Ωk
w′

[m− 1] + βw′ + nd,s,w′ )
)

∏

w∈s

(Γ(n·,−s,w[m]µk
·,−s,w[m] + +Ωk

w[m− 1] + βw + nd,s,w)

Γ(n·,−s,w[m]µk
·,−s,w[m] + Ωk

w[m− 1] + βw)

)

(7)

According to the aforementioned belief message updating
strategy, the BPE algorithm (Algorithm 3) can be extended
to perform until at least one of the two termination condi-
tions is satisfied.

6. EXPERIMENTAL STUDY
In this section, we evaluate the performance of TCS and

BPE with a large-scale crowd-oriented service data. Section
6.1 describes the experimental setup. Section 6.2 presents
the experimental results of BPE in terms of the efficiency.
Section 6.3 measures the memory cost of BPE. Section 6.4
evaluates the effectiveness of TCS model with several stan-
dard metrics. Section 6.5 illustrates some results of topics
and analyzes topic evolution in multiple consecutive buckets.

6.1 Experimental Setup
A crowd oriented service data (a.k.a question-answer data)

from Yahoo is used as our experimental data. The data con-
tains 142,612 questions and corresponding answers. Simi-
lar to [20], we set the hyperparameters as α = 2/K and
β = 0.01. Furthermore, for sampling based parameter infer-
ence methods, we report the topic modeling results after 300
iterations, which practically ensures convergence in terms of
perplexity that is a standard measure for evaluating the gen-
eralization of a probabilistic model [21].

6.2 Efficiency
We first demonstrate the TCS performance concerning the

efficiency aspect. Specifically, we compare BPE with a set
of state-of-the-art practices including variational Bayes [1]
(VB) and collapsed Gibbs sampling (GS) [10, 20]. We train
all the models on the same dataset from pSketch in order
to achieve a fair evaluation. Please refer to Figure 2 for the
performance evaluation results. In Figure 2(a), the training
time with the increase of the data size of a bucket is illus-
trated, where we set the topic amount K = 300. We sum-
marize two findings via this experiment: 1) As shown in the
figure, the training time of TCS(GS) slightly decreases with
the data size of a bucket even it involves the additional cost
of residual sorting, while that of TCS(VB) and TCS(BPE)
increases. This is because the larger data size of a budget
leads to a slightly faster convergence of the sampling based
parameter inference methods. 2)TCS(BPE) shows less sen-
sitivity to the change of the size of a bucket, which is a great
character concerning online service with dynamic changes.

We then increase the topic amountK while fixing the data
size of a bucket at 512MB, and we record the time cost of the
three parameter inference methods. The results are shown
in Figure 2(b), in which the running time of all three algo-
rithms increase with K. However, since GS and VB require
visiting all documents and the entire topic space, their time
cost increase quickly when the data size grows larger. On
the contrary, BPE only entails a subset of documents and a
fraction of topic space, which qualifies itself as a fast topic
modeling of massive crowd oriented service data.

We then answer the question that TCS(BPE) outperforms
the other topic models in terms of training efficiency. We
vary the data size of a bucket and the topic amount, and then
we evaluate the time consumption of different models and
present the result in Figure 2(c) and 2(d). Here all baseline
methods are trained on full data while TCS(BPE) is trained
selectively. In Figure2(c) we set the topic amount to be 300
and the result demonstrates the superiority of TCS(BPE)
over other models: 1) TCS is a relatively light-weight topic
model and does not involve much complicated calculation; 2)
TCS(BPE) utilizes pSketch to reduce the crowd oriented ser-
vice data that need to be digested by the downstream topic
modeling process; and 3) TCS(BPE) reduces the amount of
documents and the scope of the topic space that need to be
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scanned in each iteration. We then fix the data size of a
bucket to be 512MB while varying the topic amount K in-
creasingly and evaluate the time cost. The results are shown
in Figure 2(d), where the TCS(BPE) exhibits significantly
better scalability over other methods with a rather moderate
linear increase.

6.3 Memory Cost
Memory cost is another significant concern when evalu-

ating topic modeling techniques. In this subsection, Fig-
ure 2(e) and Figure 2(f) show the results of comparing the
memory cost of different parameter inference methods for
training TCS. The BPE approach always outperforms both
GS and VB in terms of memory cost.

Moreover, we also evaluate the performance of different
topic models by varying the data size of a bucket. Please
refer to Figure 2(g) as the results, where TCS(BPE) con-
sumes much less memory resource than LDA and TOT. The
reason is two-fold, firstly, classical topic models need to pro-
cess all data and inevitably occupy large memory resources;
secondly, small data size of each bucket helps other three
topic models exploit the memory more effectively. For ex-
ample, when the bucket size is set to 512MB, the typical
memory cost of TCS(BPE) is only 617MB, which is much
less than those consumed by the representative topic mod-
els. And this value even outperforms the result of Online-
LDA, which demonstrates the merit of pSketch in Section 4.
Then we demonstrate the memory cost in terms of a varying
amount of topics while the data size of a bucket is set to be
512MB. The results are depicted in Figure 2(h), where lin-
ear increasing behavior is observed for every topic models.
However, Online-LDA and TCS(BPE) shows lowest mem-
ory usage when the amount grows larger, which indicates
its potential as a scalable practice.

6.4 Effectiveness
In this subsection, we discuss the effectiveness of TCS

model. Specifically, the evaluation are conducted based on
the concept of perplexity measurement[21]. Before we elab-
orate the details of the experiment, we first generalize its
definition as below:

Perplexity1(θ, φ) = (

D
∏

d=1

Nd
∏

i=1

p(wi|θ, φ)

−1
∑

D
d=1

(N
d
) , (8)

Perplexity2(θ, φ) = (

D
∏

d=1

Nd
∏

i=P+1

p(wi|θ, φ,wa:P ))

−1
∑

D
d=1

(N
d
−P) .

(9)

The difference between Perplexity1 and Perplexity2 is
that the former one is used to describe the held − out per-
plexity on the learned model φ, and the latter one is used to
evaluate the effectiveness of prediction of the TCS model.

The design of TCS aims to achieve better generalization
performance, which can be associated to a lower value of
perplexity. In order to facilitate the empirical study, we
integrate about ten thousand questions and corresponding
responses into a dataset. We then evaluate the TCS ca-
pability of predicting unknown task and response words on
such dataset, and we notice that the perplexity has a mono-
tonically decreasing relationship with the likelihood of the
dataset. Moreover, we adopt LDA [20] and TOT [25](both
classical topic models) and Online-LDA [12](dynamic topic
model) as the baseline approaches while following their cor-
responding parameter estimation methods. We summarize
the results in Figure 2(i), where the lowest line(TCS) shows

lower perplexity and therefore better capability to predict-
ing unseen data comparing with the baselines. Note that for
the online models(Online-LDA and TCS(BPE)), we assume
the crowd oriented service data of each hour as a bucket.

Moreover, we aim to measure how effective the proposed
models is in terms of predicting the future task and response
words based on a portion of available tasks and responses.
Specifically, given the task words t1:P from a user’s log of
tasks and response, we try to find out which model provides
a better predictive distribution p(t|t1:P ) of the remaining
words. In particular, eighty percent of tasks and responses
data are set as the training data and the remaining twenty
percent as the test data. The calculation of the perplexity
is shown in Equation (9) and we summarize the comparison
results in Figure 2(j). As shown in the figure, TCS(BPE)
shows good capability to predict the future released tasks
and responses given the historical tasks and responses.

We then present Figures 2(k) and (l) to show the perplex-
ity1 and perplexity2 measurements while increasing the data
size of a bucket. In Figure 2(k) the topic amount is fixed
to 300. We can observe that all topic models is not sensi-
tive for changing the data size of a bucket since they show
stable value of the perplexity1 in terms of increasing data
size of a bucket. Then, Figure 2(l) shows the perplexity2
measurement with the increase of the data size of a bucket.
Not surprisingly, all the topic models remains stable on the
perplexity2 measurement, and TCS(BPE) shows obvious su-
periority over other methods in terms of perplexity.

We further demonstrate in Figure 2(m) the perplexity1
measurement with increasingly varying data size of a bucket,
while the topic amount K is set to 300. TCS(VB) exhibits
lower perplexity when the data size of a bucket increases,
because larger data size of bucket ushers in more robust
online gradient descents for higher accuracy. On the con-
trary, TCS(GS) and TCS(BPE) often perform worse when
the data size of a bucket increases, because smaller data
size of a bucket helps correct the global biases. In all cases,
TCS(BPE) achieves the lowest predictive perplexity, indi-
cating the highest topic modeling accuracy. Figure 2(n)
shows the performance of the perplexity2 measurement with
the same setting above. We report similar result to that in
Figure 2(m), where TCS(BPE) achieves highest topic mod-
eling accuracy.

These experimental results above verify that TCS is a
robust and effective topic model for crowd oriented service
data in terms of the topic modeling accuracy.

6.5 Analysis of Topic Results and Evolution
Based on the topic modeling results of TCS, it is observed

that TCS is designed to discover semantically meaningful
topics by different parameter inference methods. The top
ten words of four topics extracted by VB, GS and BPE on
the same dataset are summarized in Table 3. All three pa-
rameter inference methods exhibit effectiveness in grouping
semantically coherent task words together as topics, where
their results observe high level overlapping of task words
except slightly different word ranking. For instance, task
words “running”, “swimming”“gym”, “football” and “basket-
ball” are all contained in the topic Sport. And the rank-
ings of these task words also show great resemblance with
each other. Therefore we conclude that the discovered top-
ics are comparable among all the three parameter inference
algorithms, which means that using BPE to train TCS can

868



achieve paramount topic modeling accuracy while signifi-
cantly better efficiency is observed.

The evolution of each topic is another informal but im-
portant measure of the success of topic models. We com-
pare the topics that are discovered from consecutive differ-
ent buckets and show the results in Figure 2(o),. Again we
take the topic Sport as an example of topic evolution. In
the first bucket, the task word “swimming”(solid line with
circle marker) does not exist in the top five words. Then
after receiving more data from the crowd oriented service
data flow, the rank of “swimming” climbs from the sixth to
the second in the following several buckets. The task words
“gym” and “football” present similar trajectories where they
gradually become more and more important in the topic of
Sport. Word emergence and word perishment, in the mean-
time, is another important phenomenon in topic modeling
results. For example, in the fourth bucket, the word“injury”
appears in the topic for the first time and its rank reaches
the 7th position in the fifth bucket. On the other hand, the
word “shoe”(dotted lines) loses its importance to the topic
as more and more crowd oriented service data are processed,
and in the fourth bucket it eventually disappeared. All these
results demonstrate the capability of TCS via BPE to detect
the topic evolution.

7. RELATED WORK
In this section, we review the related work in two cate-

gories, crowd-oriented service computation and topic mod-
eling problems.

7.1 Crowd-oriented Service Computation
Crowd-oriented service computation is a long-existing con-

cept and has been practiced for centuries. With the emer-
gence of Internet web service, especially the one that facil-
itates online question-and-answer websites like Yahoo! An-
swer and Baidu Recommender, crowd-oriented service starts
to experience a new age where the source of human is broad-
ened to a vast pool of crowds, instead of designated experts.
This type of outsourcing to crowds, i.e. crowdsourcing, is
now receiving countless success in many areas such as fund
raising, logistics, monitoring and so on.

In crowd-oriented service applications, human cognitive
abilities are mainly exploited in two types: voting among
many options, and providing contents according to certain
requirements. Most of basic queries in database [8] can be
decomposed into simple voting as human tasks: such as fil-
tering [5, 6, 19] into two-option voting (Yes or No), entity
resolution [24], join [16], data cleaning[23], ranking [9], etc.

7.2 Topic Modeling
Since Blei et al. proposed the concept of topic model-

ing[2], topic modeling has attracted tremendous attention
in both academic and industrial areas since its emergence.
Especially along with the development of Web2.0 techniques,
textual data plays a more and more important role in real-
life application. Among these textual data, social network
or social media like Facebook or Twitter exhibits great value
due to their popularity and diversity in contents. Topic mod-
eling is thus adopted to track emerging events in social com-
munities [14] and to capture geographical topics [29].

Besides aforementioned wide applications, one of impor-
tant issues is how to efficiently train the probabilistic mod-
els. The collapsed variational Bayesian inference for latent
Dirichlet Allocation(LDA)[22] is proposed to beat its coun-

terpart in terms of both computation cost and training ac-
curacy. The work in [30, 31] then enables the classic loopy
belief propagation for parameter estimation by considering
the LDA as a factor graph. Topic distribution for new doc-
uments can also be inferred without retraining[28]. These
parameter inference methods tackle the efficiency issue in
training probabilistic topic models in different angles, but
none of them are able to be easily adapted to meet the re-
quirements from massive crowd oriented service data.

Moreover, another set of related researches with our work
is the Community Question Answering (CQA). In this field,
most previous work focused on bridging the lexical gap be-
tween the queried question and the historical questions [26].
Recently, a few work has studied how to utilize latent infor-
mation to fill up the lexical gap [32, 4] and how to discover
latent topics[27]. However, the biggest difference between
researches of CQA and our work lies in the research objec-
tive. Our work focus on enhancing the efficiency of training
process and save the space cost as much as possible through
the proposed sketching techniques. However, the main goals
of CQA are to bridge the lexical gap between the queried
question and the historical questions and to recommend best
answers to new questions.

To sum up, to the best of our knowledge, the TCS model
together with the BPE algorithm and the pSketch struc-
ture is the first technique that systematically investigates
the problem of topic discovery over massive crowd-oriented
service data and provides solutions with solid performance.

8. CONCLUSIONS
In this paper, we study the problem of discovering la-

tent topics over massive crowd-oriented service data effi-
ciently. In order to guarantee the efficiency and effectiveness
of the mining process, we design a novel probabilistic topic
model, called Topic Crowd Service Model, which seamlessly
incorporates a new data structure, called Pairwise Sketch
(pSketch) and an efficient parameter estimation algorithm,
called Bucket Parameter Estimation (BPE ). We conduct ex-
tensive experiments in real data to verify the effectiveness
and efficiency of TCS and BPE. In particular, we verify that
BPE algorithm not only significantly enhances the efficiency
of topic modeling but also decrease the memory cost than
that of existing approaches.
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